106 research outputs found

    On Interference Cancellation and Iterative Techniques

    Get PDF
    Recent research activities in the area of mobile radio communications have moved to third generation (3G) cellular systems to achieve higher quality with variable transmission rate of multimedia information. In this paper, an overview is presented of various interference cancellation and iterative detection techniques that are believed to be suitable for 3G wireless communications systems. Key concepts are space-time processing and space-division multiple access (or SDMA) techniques. SDMA techniques are possible with software antennas. Furthermore, to reduce receiver implementation complexity, iterative detection techniques are considered. A particularly attractive method uses tentative hard decisions, made on the received positions with the highest reliability, according to some criterion, and can potentially yield an important reduction in the computational requirements of an iterative receiver, with minimum penalty in error performance. A study of the tradeoffs between complexity and performance loss of iterative multiuser detection techniques is a good research topic

    Method of Non-Data-Aided Carrier Recovery with Modulation Identification

    Get PDF
    A non-data aided carrier recovery technique using digital modulation format identification called multi-mode PLL (Phase Locked Loop) is proposed. This technique can be interpreted as a modulation identification method that is robust against static phase and frequency offsets. The performance of the proposed technique is studied and the analytical expressions are derived for the probability of lock detection, acquisition time over AWGN channel in the cases of M-PSK and M-QAM modulations with respect to frequency offset and signal-to-noise ratio

    Modulation Identification and Carrier Recovery System for Adaptive Modulation in Satellite Communications

    Get PDF
    We introduce the modulation identification technique implementing the multimode phase locked loop (PLL) in the satellite communication using adaptive modulation scheme which is a countermeasure against the rain attenuation. In the multimode PLL, phase lock detectors (PLDs) are used for not only phase lock, but also modulation identification. We present the sub-optimized design of the PLDs for modulation identification with respect to the throughput and show the validity of sub-optimization. In addition, by the comparison between the multimode PLL and conventional scheme in ISDB-S, we present the effectivity of the multimode PLL

    A Method of Non-Data-Aided Carrier Recovery with Modulation Identification

    Get PDF
    A non-data aided carrier recovery technique using modulation format identification is proposed. This technique can also be interpreted as a modulation identification method that is robust against static phase and frequency offsets. The performance of the proposed technique is studied and analytical expressions derived for the mean acquisition time to detect lock in the cases of M-PSK, M=2,4,8, and 16-QAM modulation, with respect to frequency offset and signal-to-noise ratio. The results are verified with Monte Carlo simulations. The main advantage of the proposed method lies in its simpler implementation and faster lock detection, when compared to conventional methods

    The Adaptive Coding Techniques for Dependable Medical Network Channel

    Get PDF
    The readily existing cellular networks play an important role in the daily life communications by integrating a wide variety of wireless multimedia services with higher data transmission rates, capable to provide much more than basic voice calls. In order to increase the demands of reliable medical network infrastructure economically and establish reliable medical transmission via cellular networks, this chapter has been designed as a dependable wireless medical network using an existing mobile cellular network with sophisticated channel coding technologies, providing a new novel way of the network that is adopted as a “Medical Network Channel (MNC)” system. Adding such adaptive outer coding with an existing cellular standard as inner coding makes a concatenated channel to carry out the MNC design. The adaptive design of extra outer channel codes depends on the Quality of Services (QoS) of Wireless Body Area Networks WBANs and also on the remaining errors from the inner-used cellular decoders. The adaptive extra code has been optimized toward “Medical Network Channel (MNC)” for different medical data QoS priority levels. The accomplishment of QoS constraints for different WBAN medical data has been investigated in this chapter for “Medical Network Channel (MNC)” by using the theoretical derivations, where positive acceptable results were achieved
    • …
    corecore